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We have conducted a dynamic light-scattering study of the homeotropically aligned highly swollen
lamellar phase (layer separation d ~180 nm) of a nonionic binary system, dodecylpentaglycol (C12ES5)
and water, where the steric and entropic repulsion is the dominant intermembrane force stabilizing the
lamellar order. We have identified a hydrodynamic mode in the two momentum-transfer limits available
to light scattering. Based on previous models, we have found an explicit expression for the dispersion re-
lation of this “baroclinic” or “slip” mode for systems with large layer spacing, which successfully ex-
plains our experimental results. When d is large, the bilayer curvature elasticity and the viscous cou-
pling between water and the bilayers become more important to the understanding of the baroclinic
mode. We found the curvature elastic constant k. =k T, consistent with generally accepted values for

flexible membranes.

PACS number(s): 61.30.Cz, 61.30.Eb, 78.35.+c

I. INTRODUCTION

Certain lyotropic smectic liquid crystals can be diluted
to a very large extent without loss of their smectic order.
For example, a quaternary system containing sodium
dodecyl sulfate (SDS) can be swollen to a layer spacing d
greater than 50 nm [1,2], while a similar system contain-
ing octyl benzene sulfonic salt (OBS) can be swollen to
d ~500 nm [3]. A simple binary mixture of the nonionic
surfactant dodecylpentaglycol (C12E5) and water has
been diluted to 99 wt. % water, yielding a lamellar phase
with a layer spacing exceeding 300 nm [4]. A sketch of
the structure of the C12ES-water lamellar phase is shown
in Fig. 1. The surfactant forms bilayers with thickness
£=3.75 nm [4]; geometrically, d is determined by the
surfactant volume fraction ¢ according to the simple rela-
tion d={/¢. In systems with d >>10 nm, the short-
range hydration and Van der Waals interactions between
bilayers are unimportant. There is a long-range electro-
static interaction in the ionic systems of SDS or OBS, but
by choosing an oil dilution or brine dilution, this interac-
tion can be reduced [2]. For the nonionic system of
C12ES, there is no significant electrostatic interaction.
The dominant force to stabilize the smectic order is the
entropic and steric repulsion between layers, first pro-
posed by Helfrich [5]. The free energy per unit area of bi-
layer due to this interaction is

_ 37 (kpT)? 1)
h128 k,d?
where k. is the curvature elasticity of the bilayer.

In this paper, we report the results of a dynamic light
scattering study of the very dilute L, phase in the
nonionic C12E5 system. We also discuss our results by
extending a model of the hydrodynamics for a lipid-water
lamellar phase. The model was originally formulated by
Brochard and de Gennes [6] and has been further
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developed by Nallet, Roux, and Prost [7] in the course of
analyzing their experiments on the SDS system. In treat-
ing the energy involved in bilayer deformation, Brochard
and de Gennes assumed a stretching in the plane of the
layers, producing a change in the area per surfactant mol-
ecule. Nallet et al. introduced a layer compression
which results in a change in bilayer thickness. In both
approaches, the usual five variables of a simple fluid (the
mass, momentum, and energy densities) are supplement-
ed by two other hydrodynamic variables [9], for example,
the bilayer displacement u and the surfactant concentra-
tion ¢. While the description of the resulting seven hy-
drodynamic modes can be complicated, the problem be-
comes simpler with reasonable assumptions [6,7]. In par-
ticular, when the wave vector is oblique with respect to
the layers, one obtains a slip [6] or baroclinic [7] mode,
whose approximate dispersion relation is

o=—iuDyq} )
where
%V, 9m2 (kpT)?
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FIG. 1. A sketch of the structure of a swollen lyotropic
smectic liquid crystal.
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p is the slip coefficient [6], k. is the curvature elastic con-
stant for a bilayer, and ¢q, is the component of q perpen-
dicular to the normal to the bilayers. For d >>¢§, one ex-
pects [6] u=d?/(12n), where 7 is the viscosity of water.
The baroclinic mode involves fluctuations in the concen-
tration of surfactant, and can scatter light rather strong-
ly. To discuss the scattering, let i and f denote the polar-

J

1(q)~ [ expliq-r){8e}(0)8e;(r))dr

=(J€/dc)Hi-£)%S,.(q)+€2[(nyi)(q, f)+(ny-f)(q,

izations of the incident and scattered light. Also let n be
the director (optic axis) and ¢ be the concentration (num-
ber of molecules per unit volume) of the surfactant mole-
cules; in terms of their fluctuating components, these may
be written n=ny+8n and ¢ =cy+8¢, where n, and ¢,
are equilibrium values. The intensity of scattered light is
given by [7]

)18y, (q)

+(3&/8c )€, (i- F)[(ng-i)(q,- £)+(ng- £)(q,-i)][ S, (@) —SX(q)] . 4)

The surfactant molecular dielectric tensor is e,
€=(¢*+2¢,)/3, and €,=¢,—€,. As €, is very small,
higher-order terms have been neglected:

S..(q)= [ exp(iq-r){8c*(0)5c(r))dr , (5a)
S.u(@)= [ expliq-r){(8u*(0)8u(r))dr , (5b)
Sw(q)=fexp(iq-r)(8c*(0)8u(r))dr . (5¢)

From this we can see that concentration fluctuations con-
tribute to light scattering through the first and the third
terms of Eq. (4).

II. EXPERIMENT

The C12ES5 was obtained from Fluka and used without
further purification. The water was triply distilled. The
sample was made of 2.0 wt. % CI12ES and 98 wt. % wa-
ter; this gives a lamellar spacing d ~180 nm [4]. It was
loaded in the isotropic L, phase into a cell made of two
fused silica plates separated by a 0.4-mm teflon spacer
which also served as a gasket to seal the cell. A homeo-
tropic well-aligned single-domain lamellar phase was ob-
tained by filling the cell at room temperature, then rapid-
ly heating to the upper L, phase and allowing it to equili-
brate for 24 hours; then the sample was heated into the
isotropic phase and slowly cooled back into the L, phase.
When examined under a microscope, the sample showed
a uniform texture and good optical extinction between
crossed polarizers. During the experiment, the tempera-
ture was kept at T =59°C, in the upper L, phase. The
light scattering setup is shown schematically in Fig. 2.
We chose the z axis parallel to the normal to the bilayers,
and the x axis in the scattering plane so that g, =g, and
q,=q,. To isolate the concentration fluctuations, both
polarizations i and f were set perpendicular to the plane
of scattering, so that the bracketed geometric factor con-
tained in the second and the third terms of Eq. (4)
equaled zero. The sample was illuminated by a helium-
neon laser (A=6328 A). The scattered light was collected
at 13 angles ranging from 6=9° to 43° inside the sample.
Strong signals were obtained with a signal-to-background
ratio of at least 1/5. By comparing the intensity auto-
correlation function to that from a solution of standard
polystyrene latex spheres in the same scattering
geometry, we determined the scattering to be homodyne.

—

Typical correlation functions are plotted in Fig. 3. All of
the correlation functions can be fitted very well with two
decay times, a larger amplitude slow mode and a smaller
amplitude fast mode. The fitting function was

y=B+[A,exp(—Tt)+ A, exp(—T,1)]? (6)

with B fixed at the measured background. The values for
I'; and T, are plotted vs g, in Fig. 4; both modes ap-
peared to depend linearly on g2. If we associate the slow
mode (I";) with the baroclinic mode described by Egs. (2)
and (3), we obtain D,, =0.36 Pa from the slope of the fit
to g2, and find k,=2.8kyT from Eq. (3). While these
values compare well with those obtained by Nallet, Roux,
and Prost [7] from studying the baroclinic mode of the
SDS system, where the range of swelling was from 3 to 35
nm, k_ is two to three times the value obtained for a simi-
lar C12ES system by Strey et al. [4] by studying thermal-
ly induced deviations from linear swelling with d =§/¢.
It is also about three times the value obtained by Nallet,
Roux, and Prost from their study of the undulation
mode. This disagreement leads us to reconsider, for the
particular case of a system with very larger d, the hydro-
dynamics of the baroclinic mode. As a result, we shall
obtain a more complete expression for the dispersion re-
lation Eq. (2). We shall also explain the origin of the two
decay times observed at each scattering angle.

& A=6328 A

FIG. 2. Geometry of the light-scattering experiment.
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FIG. 3. Typical intensity autocorrelation functions for the
scattered light and fits to Eq. (6). The dashed lines show the de-
cay of the slow mode only.

III. HYDRODYNAMICS OF THE
LAMELLAR PHASE

To discuss the hydrodynamics of the binary lipid sys-
tem for large d, we use the phenomenological approach
of Brochard and de Gennes for lyotropic smectics [6].
Our notation is that of Ref. [6]; in an appendix we give a
table translating to the notation of Ref. [7]. At constant
temperature we need three variables to describe the in-
teresting behavior of the lamellar phase. These may be
the total density dilation ©, the dilation of the layer spac-
ing y=(d —dq)/d.q=0u /dz, and the dilation of the
surfactant concentration €=(cq—c)/cy=0c/cy, where
d.q is the layer spacing at equilibrium. Since © involves
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FIG. 4. Fits of the slow and fast decay times to Eq. (12).
The open circles are forward scattering (fast decay) and the
filled circles are backward scattering (slow decay).

the first sound, which is much faster than the membrane
fluctuations we are considering and couples little to them,
we may assume the material is incompressible. For the
third variable, instead of using €, one may use the relative
change of the area per polar head 6=(4 —A4.)/ A4
where 4., is the area per polar head at equilibrium.
These are related by e=7y + 8. Using strain of the area of
surfactant molecules as one of our variables is similar to a
more recent approach by Lubensky, Prost, and
Ramaswamy [8] where a crumpling membrane is intro-
duced. The free energy density can therefore be expanded
as

2
aZ
f:%D2272+02375+%D3352+%K a%
2
aZ
=fi+K |5 )

where the last term is the membrane curvature elastic en-
ergy and K =k, /d. Following [6], the equations of
motion of the fluid are

Wy __3p 3
Par — ax ax |35 |,
il %, 4 %, 4 d%v, 8
T ex? " ez axez |’ ®
dv, 0 4
p e _0p B || )t
at dz 0z | Iy |s Ix*
4 lo %, 4 %, N %, 9
M1 822 " ax? | oxoz |’ ©)

where we have included the force due to curvature elasti-
city, and p and v are the local pressure and velocity of the
fluid. Water is assumed not to cross the bilayers, and the
surfactant molecules are assumed not to leave them;
that is, no permeation occurs. With no permeation v,
=9u /dt, and the x component of the lipid velocity is
given by v;, =085/9dt. Under these conditions, and with
the material 98% water, it is appropriate to use an isotro-
pic shear viscosity 77 equal to the viscosity of water in
Egs. (8) and (9). (Equations including permeation and an-
isotropic expressions for the shear viscosity can be found
in [6] and [7].) Water may, however, flow between the bi-
layers in the x direction. This is described by the phe-
nomenological equation [6]

9f
a8

(uLx—vx)=u% , (10)

Y

where v;, is the x component of lipid velocity. Then we
may combine V-v; =03e/9¢ with the incompressibility
condition V-v=0 to obtain

9f
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If we assume the Fourier components of « and € have the
time and space dependence e¢?” ~'** we may use Egs. (9)
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and (11), combined with the incompressibility and imper-
meability conditions to arrive at the characteristic deter-
minant for nontrivial # and &:

(@’ —iong®/p—wi)lio+pugiDsy;)—wilio+ugiDy;)=0,

(12)
where
1 [gxa; |? qs
wi=— | == | |Dp—Dyu+K= |, (13a)
Pl g z
q:9 ?
1 | 9x4:
2
0r=— (D33—Dy3) (13b)
1 P q 33 23

Before solving Eq. (12), it is useful to estimate the magni-
tudes of D,,, D,3;, and D;;. Physically, f; in Eq. (7)
arises from the effects of the Helfrich repulsion and layer
stretching; these may be described by the phenomenologi-
cal free energy density

Vi(d)

F= a. +iyc(Ad—A4y)?, (14)

where ) is a coefficient of layer resistance to stretching
[6] and A is the area per polar head in an unstretched
bilayer. In order to expand ¥ in terms of ¥ and §, let us
imagine a static process (with no long-range fluctuations)
in which such bilayers are assembled to a lamellar phase
of separation d,. The concentration of surfactant will be
¢y =2/ Aydy, molecules per unit volume. When such a
lamellar phase relaxes to equilibrium, the repulsion be-
tween the layers will cause an increase in layer spacing to
d.q=dy(1+7); we expect y,<<1. Since the surfactant
concentration does not change during this process,
Aqdeq= Apd, and there will be a corresponding reduc-
tion of 4 to A.;=Aq/(1+y,). To find y,, we minimize
F while keeping both the surfactant concentration fixed
at ¢y and the number of layers fixed. This requires

d od

€q

+%xcoAéaid(l—do/d)2=0 . (15)
The solution to Eq. (15) gives the value for d g, from
which we may calculate yo, 4.4, and F.. The result is
Yo=Vy /X Aeq- With ¥y +8+y8=0 to maintain constant
surfactant concentration, we calculate

Fi=Fy,8)—F,
917'2 (kBT)Z 2 2 <2
1k Yitxeo Aoyt ixcode 8. (16)
12k kcdgq €q 2 eq
Thus,
_ 917'2 (kBT)Z
22_—6—4—— kd3 > (17)

c%eq
D33=Xc0qu=2XAeq/deq ’
and

Dyy=xcoAZvo=2V,/deq=Dy/3 . (19)
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The cross term D,; arises because in equilibrium each bi-
layer is slightly compressed in order to reduce the repul-
sion between the layers. For our system with d ., ~180
nm, and k,~kpT=4.58X10"!12 nJ, we estimate
D,,~0.8 Pa, or 8 ergcm ™ >. We might naively estimate
D, using typical values [10] for y=~2X10'®* Pam~! and
Aq=0.6 nm?, for our sample we would obtain
Dy;~1.2X10°® Pa, or 1.2X 107 ergcm 3. However, the
large thermal fluctuations responsible for the Helfrich
force mean that the layers are substantially crumpled, al-
though flat on average at long wavelengths. The
coefficient D;; is therefore greatly reduced, in the same
way that crepe paper is much easier to stretch than
smooth paper. The magnitude of this effect has been cal-
culated by Lubensky, Prost, and Ramaswamy [8], who es-
timate Dj;;~200-400D,,, that is, D;3;=~160-320 Pa.
This leads to y,~2X 1073, which is indeed <<1 is as-
sumed.

We now return to solve Eq. (12). There are three roots
to the cubic equation and it is not easy to find the analyti-
cal solutions to all of them. Our first approach is to find
the purely imaginary root which has the lowest frequen-
cy, in order to explain the diffusive modes in our experi-
ment. It turns out that when D33 >>D,,,D,; and o < 103
sec” ! we can drop the terms in Eq. (12) which contain ?
and w3. We then obtain

Dyq?+Kg; g2 20)
gZ+ung*+(K/Ds3)gi

io=T=p

If g, is not too small this expression crosses over to Eq.
(2) as d becomes smaller. That is because 2 and the ratio
K /D, are proportional to d2 and the K /D5, term in the
denominator is not very important. It becomes a mode of
layer undulation when g,—0. The relative amounts of
layer displacement u and concentration change €, which
are necessary to calculate the intensity of the scattering,
can be determined from Eq. (11). In this way, one may
obtain the concentration autocorrelation function

kpTq;
(Je(@l?)=—D2 % Q1)
D22qz +qu

We also did numerical calculations to all the roots, and
find, as we shall explain later in this paper, that the other
two roots describe modes which decay too rapidly to see
with our autocorrelator.

If Eq. (20) describes the only mode we can detect with
our correlator, why did we see two decay times in the
scattering? The reason is that when light passes through
the sample at normal incidence, about 4.5% is reflected
back into the sample by the second silica window, and we
see scattering at both the angle 6 and its complement, as
illustrated in Fig. 2. The two components have the same
g, value, but the forward scattering has a much smaller
g, than does the backward scattering. Using Eq. (20), we
may associate the slow and fast decays with backward-
and forward-scattering geometries, respectively. The
scattered intensity for this mode should be inversely pro-
portional to the decay rate I', which will tend to make up
for the weaker incident beam for the backward-scattered
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light. However, that is not enough to explain the ob-
served intensity ratio (the forward scattering is actually
weaker). The wave vector for the backward scattering is
about 85% of 27/d,,, and the broadening of the Bragg
peak may increase the scattering.

With the two geometries in mind, we analyzed our data
using a numerical solution to Eq. (12), choosing the low-
frequency mode, although when D3 = 50D,,, the numer-
ical solution is indistinguishable from Eq. (20). We chose
K =k_/d, D, given by Eq. (17), and p=d2,/(127), as
calculated by Brochard and de Gennes [6]. When these
substitutions are made, the decay time for our concentra-
tion fluctuations depends strongly on only two parame-
ters, k. and d.q, with a weak dependence on D;;. The
other quantities are all known by other means. The re-
sults of fitting the forward- and backward-scattering data
simultaneously, with 7=0.005 poise, are shown in Fig. 4.
When d, Dj;, and k, were all allowed to vary we obtained
k,=(7.0+5.0)X1072 nJ or (1.5£1)kgzT, d.q=(170
+40) nm, and D;;=(5.6x1.4) Pa. The large uncertain-
ties arise because the parameters are correlated in the fit.
When we restrict d to the 180 nm obtained by Strey et al.
[4], we find k,=(1.35%0.35)kzT and Dj33;=(5.31+0.8)
Pa. It is not obvious that the expression p=d gq /(127)
should hold for crumpled bilayers; one might expect the
crumpling would result in u=d2;/(127), with deg=deq.
As our data could be quantitatively represented by the
simpler expression with reasonable values of the parame-
ters, we did not introduce this extra complication.

We now come back to Eq. (20). When D; is large, our
fit of Eq. (20) to the data in Fig. 4 is as good as the nu-
merical solution. It is rather insensitive to D3;. If we
take any value of D;; greater than 50 Pa and allow d and
k., to vary, we obtain d.,=(210%£15) nm and
k,=(0.75+0.1)kp T with a x? only 20% larger than the
best fit for all three parameters. For the parameters we
found, the penetration depth A=(K /D,)!/? is 210 nm,
and D,, is 0.8 Pa. Physically, for backward scattering,
where g, is large, the layer compression term dominates
in the numerator of Eq. (20) and large concentration fluc-
tuations are involved. For forward scattering, the curva-
ture term dominates and the mode has become mostly
one of layer undulation; it can still be detected in our po-
larization setting (i||f) because small concentration fluc-
tuations remain. The denominator of Eq. (20) is essen-
tially g2 multiplied by a constant in our experiment; the
presence of the ung* term makes this constant approxi-
mately 3 instead of 1, and therefore makes I" three times
smaller. This term results from the damping due to the
slip flow of the water between the bilayers.

Returning to Eq. (12), we solved numerically for the
other two roots; with these parameters, they had magni-
tudes of 10* sec™! or greater. We also investigated the
possibility that our two decay times might be the result of
simply forward scattering by two different modes of Eq.
(12), rather than forward and backward scattering of only
the lowest frequency mode. When Dj; is large enough
and g, ~gq,, the two higher frequency modes are a pair of
propagating ‘“‘second sound” modes. However, for small
values of D;;, as we apparently have here, all three roots
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of Eq. (12) are imaginary, and two of them are relatively
low frequency. It was, in fact, possible to fit our data to
forward scattering by the two lowest frequency roots of
Eq. (12). The parameters we obtained this way were
d.q =200 nm, k. =0.08kp T, and D3;=1.2 Pa, which give
D,,=9.5Pa and A=14 nm. These are so far from physi-
cally reasonable values that we believe our interpretation
of forward and backward scattering from the low-
frequency mode is the correct one.

IV. CONCLUSIONS

We have investigated the spectrum of light scattered
from a homeotropically aligned highly swollen lamellar
phase (d ~180 nm) in a nonionic binary system (C12ES
and water), where the Helfrich repulsion is the dominant
force between bilayers to stabilize the lamellar order. At
each scattering angle we observed an intensity autocorre-
lation function for the scattered light with two decay
times. We identified these as coming from simultaneous
observation of the baroclinic mode in both forward and
backward scattering.

We conclude that the Brochard—de Gennes model [6]
combined with Helfrich’s calculation [5] of the entropic
and steric interbilayer repulsion quantitatively describes
dynamical behavior of the baroclinic mode of highly
swollen lamellar phases of nonionic surfactants.

We found that for a highly swollen lamellar phase, it is
important to consider the curvature elastic energy in cal-
culating the dispersion relation even for the very oblique
momentum transfer case. Because the interbilayer repul-
sion is so weak, the curvature energy leads to the interest-
ing property that the mode relaxation speeds up as g be-
comes smaller. The faster forward-scattering branch in
Fig. 4 is in the crossover region between the baroclinic
mode for larger g, and the decoupled undulation mode of
q,=0. Finally, since the slip coefficient scales as d 2, the
damping to the fluctuations of bilayers due to the water
between them plays a more important role in highly swol-
len system.
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TABLE I. Comparison of the notation used in this paper and
by Nallet et al.

This paper D,, Dy, D u
Ref. [7]* B clc/x—C,)

c?/x a,/(p*c?)

2Note that c in Ref. [7] has different units from this paper.



APPENDIX

The articles by Nallet, Roux, and Prost [7] and by Lu-
bensky, Prost, and Ramaswamy [8] give an extensive
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analysis of the modes of a lyotropic smectic, but use
different notation. Our notation follows more closely
that of the earlier article by Brochard and de Gennes [6].
In Table I we give parameters in the notation of Refs. [7]
and [8] which correspond to the ones we used.
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